
COP 4600: Intro To OS (Distributed Process Management) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2011

Introduction To Operating Systems

Distributed Process Management – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2011

COP 4600: Intro To OS (Distributed Process Management) Page 2 © Dr. Mark Llewellyn

Distributed Process Management

• In this set of notes we’ll examine some of the key mechanisms

used in distributed operating systems.

• Process migration: the movement of an active process from one

machine in the network to another machine in the network.

• Distributed global states: how processes on different systems can

coordinate their activities when each is governed by a local clock

and when the network imposes a delay in the exchange of

information.

• Distributed mutual exclusion: how to ensure mutually exclusive

access in a distributed environment.

• Distributed deadlock: how to prevent or detect and resolve

deadlock in a distributed environment.

COP 4600: Intro To OS (Distributed Process Management) Page 3 © Dr. Mark Llewellyn

What is a Distributed System?

• While many different definitions of what constitutes a

distributed system have been put forth, there is general

consensus that there are several central components that a

distributed system must contain:

– A set of autonomous computers.

– A communication network, connecting those computers.

– Software which integrates these components with a

communication system.

COP 4600: Intro To OS (Distributed Process Management) Page 4 © Dr. Mark Llewellyn

What is a Distributed System?

Node A Node B

Node C Node D

Machine limits

USER

Software

component

Communication

COP 4600: Intro To OS (Distributed Process Management) Page 5 © Dr. Mark Llewellyn

Important Characteristics of Distributed Systems

• Based on our simple definition, there are several important
characteristics of distributed systems that need a closer
look.

• All of these characteristics are based on the concept of
transparency.

• In the context of information technology, the concept of
transparency literally means that certain things should be
invisible to the user. The manner in which the problem is
solved is largely irrelevant to the user.

• The following transparency properties play a large role in
achieving this result for the user:

COP 4600: Intro To OS (Distributed Process Management) Page 6 © Dr. Mark Llewellyn

Transparency Properties of Distributed Systems

Location Transparency – users do not necessarily need to know where
exactly within the system a resource is located which they wish to
utilize. Resources are typically identified by name, which has no
bearing on their location.

Access Transparency – the way in which a resource is access is uniform
for all resources. For example, in a distributed database system
consisting of several databases of different technologies, there
should also be a common user interface (such as SQL).

Replication Transparency – the fact that there may be several copies of a
resource is not disclosed to the user. The user has no need to know
whether they are accessing the original or the copy. The altering of
the resource also must occur transparently.

COP 4600: Intro To OS (Distributed Process Management) Page 7 © Dr. Mark Llewellyn

Transparency Properties of Distributed Systems
(cont.)

Error Transparency – users will not necessarily be informed of all errors

occurring in the system. Some errors may be irrelevant, and others

may well be masked, as in the case of replication.

Concurrency Transparency – distributed systems are usually used by

several users simultaneously. It often happens that two or more

users access the same resource at the same time, such as a database

table, printer, or file. Concurrency transparency ensures that

simultaneous access is feasible without mutual interference or

incorrect results.

Migration Transparency – using this form of transparency, resources can

be moved over the network without the user noticing. A typical

example is today’s mobile telephone network in which the device

can be moved around freely, without any loss of communication

when leaving the vicinity of a sender station.

COP 4600: Intro To OS (Distributed Process Management) Page 8 © Dr. Mark Llewellyn

Transparency Properties of Distributed Systems
(cont.)

Process Transparency – It is irrelevant on which computer a certain task
(process) is executed, provided it is guaranteed that the results are
the same. This form of transparency is an important prerequisite for
the successful implementation of a balanced workload between
computers.

Performance Transparency – when increasing the system load, a dynamic
reconfiguration may well be required. This measure for
performance optimization should be unnoticed by other users.

Scaling Transparency – if a system is to be expanded so as to incorporate
more computers or applications, this should be feasible without
modifying the system structure or application algorithms.

Language Transparency – the programming language in which the
individual subcomponents of the distributed system or application
were created must not play any role in the ensemble. This is a fairly
new requirement of distributed systems and is only supported by
more recently developed systems.

COP 4600: Intro To OS (Distributed Process Management) Page 9 © Dr. Mark Llewellyn

Process Migration

• Process migration is the transfer of a sufficient amount
of the state of a process from one computer to another
for the process to execute on the target machine.

• Interest in this concept arose from research into methods
of load balancing across multiple networked systems.

• True process migration includes the ability to preempt a
process on one machine and reactivate it later on another
machine.

• Process migration is desirable in a distributed system for
a number of reasons, including those listed on the next
page.

COP 4600: Intro To OS (Distributed Process Management) Page 10 © Dr. Mark Llewellyn

Motivation For Process Migration
• Load sharing

– By moving processes from heavily loaded to lightly loaded systems, the load can be balanced
to improve overall performance. While empirical data suggests that significant improvements
are possible, care must be taken in the design of load-balancing algorithms. The more
communication that is necessary for the distributed system to perform the balancing, the worse
the performance becomes.

• Communication performance

– Processes that interact intensively can be moved to the same node to reduce communications
cost for the duration of their interaction. Also, if a process is performing data analysis on
some file or set of files which are larger than the process’s size, it may be advantageous to
move the process to the data rather than moving the data to the process.

• Availability

– Long running processes may need to move to survive in the face of faults for which advance
notice is possible or in advance of scheduled down-time. If the OS provides such notification,
a process that wants to continue can either migrate to another system or ensure that it can be
restarted on the current system at some later time.

• Utilizing special capabilities

– A process can move to take advantage of unique hardware or software capabilities on a
particular node.

COP 4600: Intro To OS (Distributed Process Management) Page 11 © Dr. Mark Llewellyn

Process Migration Mechanisms

• A number of issues need to be addressed in designing a

process migration facility.

• Among these issues are the following:

1. Who initiates the migration?

2. What portion of the process is migrated?

3. What happens to outstanding messages and signals?

COP 4600: Intro To OS (Distributed Process Management) Page 12 © Dr. Mark Llewellyn

Initiation of Migration
• Who initiates the migration depends on the goal of the migration

facility.

• If the goal is load balancing, then some module in the OS that is

monitoring system load will generally be responsible for deciding

when a migration should take place.

– The module will be responsible for preempting or signaling a process to be

migrated.

– To determine where to migrate, the module will need to be in communication

with peer modules in other systems so that load patterns on other systems can be

monitored.

– In this case, the entire migration function and even the existence of multiple

systems may be transparent to the process.

• If the goal is to reach a particular resource, then a process may initiate

the migration as the need arises.

– In this case, the process must be aware of the existence of a distributed system.

COP 4600: Intro To OS (Distributed Process Management) Page 13 © Dr. Mark Llewellyn

What is Migrated?

• When a process is migrated, it is necessary to destroy the

process on the source system and recreate it on the target

system.

– This is a movement of a process and not a replication.

– Thus, the process image consisting of at least the process

control block (PCB) must be moved. In addition, any links

between this process and other processes (such as for passing

messages and signals) must be updated.

• The figure on the next page illustrates the migration of

process 3 out of machine S to become process 4 on

machine D.

COP 4600: Intro To OS (Distributed Process Management) Page 14 © Dr. Mark Llewellyn

Example of

Process

Migration

Before

migration

After

migration

COP 4600: Intro To OS (Distributed Process Management) Page 15 © Dr. Mark Llewellyn

What is Migrated? (cont.)

• The movement of the PCB is straightforward in process migration.

The difficulty, from a performance point of view, concerns the

process address space and any open files assigned to the process.

• Let’s first consider only the process address space and assume that

a virtual memory scheme utilizing paging is being utilized.

• Several different strategies can be employed for what is migrated

in this environment.

– Eager (all) – transfers entire address space

– Precopy –

– Eager (dirty) – limited transfer of pages

– Copy-on-reference

– Flushing

COP 4600: Intro To OS (Distributed Process Management) Page 16 © Dr. Mark Llewellyn

What is Migrated? (cont.)

• Eager (all): Transfer entire address space at time of

migration.

– No trace of process is left behind in the old system.

– If address space is large and if the process does not need most

of it, then this approach my be unnecessarily expensive.

• Precopy: Process continues to execute on the source

node while the address space is copied to the target

node.

– Pages modified on the source during precopy operation have

to be copied a second time.

– Reduces the time that a process is frozen and cannot execute

during migration.

COP 4600: Intro To OS (Distributed Process Management) Page 17 © Dr. Mark Llewellyn

What is Migrated? (cont.)

• Eager (dirty): Transfer only the pages of the

address space that are in main memory and have

been modified.

– Any additional blocks of the virtual address space are

transferred on demand only.

– While this approach minimizes the amount of data

that will be transferred, it does require that the source

machine be involved throughout the life of the

process by maintaining page table entries. This

implies that the process requires remote paging

support.

COP 4600: Intro To OS (Distributed Process Management) Page 18 © Dr. Mark Llewellyn

What is Migrated? (cont.)

• Copy-on-reference: Pages are only brought over when

referenced.

– Has the lowest initial cost of process migration.

• Flushing: Pages are cleared from main memory of the

source by flushing dirty pages to disk.

– The pages are accessed as needed from disk instead of main

memory on the source node.

– This strategy relieves the source of holding any pages of the

migrated process in main memory, immediately freeing a block

of memory to be used for other processes.

COP 4600: Intro To OS (Distributed Process Management) Page 19 © Dr. Mark Llewellyn

Negotiation of Migration

• Migration policy is responsibility of Starter

utility.

• Starter utility is also responsible for long-term

scheduling and memory allocation.

• Decision to migrate must be reached jointly by

two Starter processes (one on the source and one

on the destination).

COP 4600: Intro To OS (Distributed Process Management) Page 20 © Dr. Mark Llewellyn

Negotiation of Migration (cont.)

COP 4600: Intro To OS (Distributed Process Management) Page 21 © Dr. Mark Llewellyn

Eviction

• Destination system may refuse to accept the

migration of a process to itself.

• If a workstation is idle, process may have been

migrated to it

– Once the workstation is active, it may be necessary to

evict the migrated processes to provide adequate

response time.

COP 4600: Intro To OS (Distributed Process Management) Page 22 © Dr. Mark Llewellyn

Distributed Global States

• Operating system cannot know the current state of all

process in the distributed system.

• A process can only know the current state of all

processes on the local system.

• Remote processes only know state information that is

received by messages.

– These messages represent the state at some time in the past.

– Analogous to the situation in astronomy, our knowledge of an

object 5 light-years away from the observation point is 5 years-

old.

COP 4600: Intro To OS (Distributed Process Management) Page 23 © Dr. Mark Llewellyn

A Running Example

• A bank account is distributed over two branches.

• The total amount in the account is the sum at

each branch.

• At 3 PM the account balance is to be determined.

• Messages are sent to request the information.

COP 4600: Intro To OS (Distributed Process Management) Page 24 © Dr. Mark Llewellyn

Process State Diagrams

Horizontal lines

represent time

axis for each

process.

A point on the

horizontal line

represents an event

(e.g. internal

process event,

message send,

message receive.

A box surrounding a point

represents a snapshot of

the local process taken at

that point in time.

An arrow represents a

message between two

processes.

COP 4600: Intro To OS (Distributed Process Management) Page 25 © Dr. Mark Llewellyn

Message

from branch A

to branch B

Message from

branch B to

branch A

One possible scenario – in this case reported account balance is correct

Example Scenarios For Bank Example

COP 4600: Intro To OS (Distributed Process Management) Page 26 © Dr. Mark Llewellyn

If at the time of balance determination, the balance from branch A is in transit

to branch B. In this case balance determined at 3:00 pm is incorrect.

All messages in transit must be examined at time of observation. The correct

total consists of balance at both branches and amount in any message in

transit.

Example Scenarios For Bank Example

COP 4600: Intro To OS (Distributed Process Management) Page 27 © Dr. Mark Llewellyn

Example Scenarios For Bank Example

If the clocks at the two branches are not perfectly synchronized a problem

can arise. Suppose that a transfer message is initiated at branch A at local

time 3:01 pm. This message arrives at branch B at 2:59 local time. The

balance calculated at 3:00 pm will now show the incorrect amount of $200.

The amount is incorrectly counted twice.

